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A R E V I E W  OF C O M B I N E D  L I Q U I D  
C H R O M A T O G R A P H Y  A N D  MASS SPECTROMETRY 

Dominic M.  Desiderio and  Genevieve H .  Fridland 
Department of Neurology and  

C h a r k s  B . Stout  Neuroscience Mass Spectrometry Laboratory 
University of Tennessee  Center  f o r  t h e  Health Sciences 

956 Cour t  Avenue 
Memphis, Tennessee 38163 

ABSTRACT 

The area of r e sea rch  involving t h e  on-line combination of mass 
spec t romet ry  and  l iquid chromatography h a s  recent ly  exper ienced  a 
period of i n t ense  growth. A dependable LC-MS combination is 
eagerly awaited fo r  by  many r e sea rche r s .  The  sa l ien t  f ea tu re s  of 
t h e  combination a spec t  of LC-MS are analyzed i n  this  review. LC-MS 
may opera te  i n  e i ther  t h e  off-line o r  t h e  on-line mode. The  
off-line mode is i l lus t ra ted  with t h e  analytical  measurement of 
biologically impor tan t  p e p t id es . 

I. T H E  O N - L I N E  C O M B I N A T I O N  O F  L I Q U I D  

C H R O M A T  0 G R A P H Y  A N D  MASS S P E C  T R O M E T  R Y  

A .  I N T R O D U C T I O N  

The  on-line i n s t rumen ta l  combination of high performance 

liquid chromatography (HPLC) and  mass spec t romet ry  (MS) is 
a n a t u r a l  combination t h a t  effectively couples t h e  separa t ion  

power of H P L C  w i t h  M S ,  which is capable of achieving high 

levels of sensit ivity and  molecular specificity. The  dr iv ing  

force  f o r  sc ien t i s t s  t o  develop a n  on-line combination 
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318 DESIDERIO AND FRIDLAND 

of H P L C  and MS is t h e  need t o  decrease  t h e  number  of experimental  

s t e p s  and  manual in te rvent ions  requi red  t o  manipulate s m a l l  

amounts of prec ious  endogenous  biological materials, especially 

peptides.  However, t h e  coupling of t h e s e  two v e r y  dissimilar 

i n s t rumen ta l  methods is difficult t o  achieve and  indeed ,  it is 

t h e  au thors '  opinion t h a t  t h e  r a t e  of development of achieving 

a n  efficient and  dependable on-line coupling f o r  LC-MS is 

relatively slow, compared t o  t h e  cor responding  in i t ia l  development 

of t h e  combination of gas  chromatography with m a s s  spectrometry (1). 

Nonetheless, i nves t iga to r s  a r e  creatively approaching  t h i s  

in te r face  problem and  it is simply a matter of time un t i l  t h i s  

combination technique  w i l l  b e  i n  t h e  h a n d s  of many inves t iga tors .  

The  l i t e r a tu re  per ta in ing  t o  on-line LC-MS h a s  been  reviewed 

extensively ( 2 - 4 ) .  

B .  B A S I C  C O N S I D E R A T I O N S  

In principle,  t h e r e  are two d i f fe ren t  in te r fac ing  methods t o  

achieve t h e  on-line combination of HPLC with MS. On one hand ,  a 

d i r ec t  liquid in t roduct ion  (DLI) i n t e r f ace  performs exactly 

what t h e  name implies, t h a t  is, t h e  l iquid emerging from t h e  

H P L C  column is in t roduced  directly in to  t h e  mass spectrometer.  

The  solvent is removed by  some appropr i a t e  process  s u c h  a s  

nebulization, t he rmospray ,  e tc .  On t h e  o t h e r  hand ,  t h e  

effluent from t h e  H P L C  column may b e  deposited upon a 

moving be l t ,  which t r a n s p o r t s  a chromatographic f rac t ion  from 

t h e  ex te rna l ,  high p r e s s u r e  region of t h e  HPLC uni t ,  t h r o u g h  a n  

in te r face ,  and  in to  t h e  high vacuum portion of t h e  mass spectrometer 

where ionization is effected.  These  two sepa ra t e  in te r fac ing  

techniques ,  D L I  and  moving belk, w i l l  b e  d iscussed  i n  g rea t e r  

detail  i n  t h e  n e x t  section. 

There  a r e  f ive  opera t iona l  parameters  which must b e  

thoughtfully analyzed and  experimentally optimized f o r  any 
particular t y p e  of on-line HPLC-MS development and  
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COMBINATION OF HPLC AND MS 319 

experimentation. These  parameters  inc lude  t h e  u s e  of a normal 

H P L C  column v e r s u s  a microbore column (5,6); t h e  u s e  of 

e i ther  a h igh  voltage magnetic i n s t rumen t  o r  a l o w  voltage 

quadrupole  m a s s  spectrometer;  u s e  of e i the r  t h e  sp l i t  o r  

spli t less mode f o r  t h e  LC-MS in t e r f ace  following t h e  H P L C  

column; t h e  u s e  of e i the r  volatile o r  nonvoladle bu f fe r s  f o r  

HPLC separations;  and  t h e  selection of t h e  ionization process ,  

which p lays  a s i g n s i c a n t  role i n  t h a t  e i the r  electron 

ionization (EI) o r  chemicalionization (CI) may b e  used  

t o  ionize t h e  HPLC f rac t ion ,  as opposed to  a su r face  method 

such  as secondary  ion mass spectrometry (SIMS) o r  

f a s t  atom bombardment (PAB) m a s s  spec t romet ry .  

C .  D I R E C T  L I Q U I D  I N T R O D U C T I O N  

INTERFACE 

One of t h e  f i r s t  sets of exper iments  t o  s t u d y  t h e  D L I  of 

solutions i n t o  a mass spec t rometer  involved t h e  u s e  of C I  

mass spectrometry (7-11). T h e  C I  sou rce  f o r  LC-MS followed 

t h e  work with LC-MS i n  t h e  E I  mode. Chemicalionization 

LC-MS w a s  developed t o  s u c h  a poin t  whereby polypeptide 

sequericing was possible. For determining t h e  amino acid 

sequence  of a pept ide ,  t h e  a u t h o r s  f e l t  t h a t  t h e  information 

from a C I  mass spec t rum appeared  t o  b e  a t  l e a s t  as valuable 

as t h a t  information derived from EI .  Direct solution 

in t roduct ion  h a s  t h e  f u r t h e r  advan tage  t h a t  t h e  resull5ng 

d i rec t  C I  mass spectrum & w s  sequencing  of less voladle 

samp1.e~ such  as underivatized pentapept ides .  I n  t h i s  s t u d y ,  

t h e  zwitterionic cha rac t e r  of t h e  pept ide  is eliminated b y  

acetylation of t h e  f r e e  amino g roup  and  esterification of t h e  

f r e e  ca rboxy l  groups .  The  L C  so lvents  used inc luded  

acetonitri le and water. A capillary spUt te r  i n t e r f ace  is used  i n  

f r o n t  of t h e  HPLC U V  detec tor  and  continuously in t roduces  

f ive  t o  t e n  microliters of t h e  LC e f f luent  p e r  minute i n t o  a C I  

m a s s  spec t rometer .  Because only about  one o r  two pe rcen t  of 
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320 DESIDERIO AND FRIDLAND 

t h e  pept ide  sample e n t e r s  t h e  m a s s  spec t rometer ,  t h e  

sensit ivity of t h e  method is decreased by  a f ac to r  of 100. 

Mass s p e c t r a l  s c a n s  a r e  cycled continuously du r ing  L C  

elution, and  two o r  t h r e e  cor responding  mass spec t r a  w e z e  

obtained p e r  H P L C  peak. The  H P L C  so lvent  s e r v e s  

readily as t h e  C I  ionizing r eagen t  a l though o the r  r eagen t s  can 

be  added  concurren t ly  t o  a l t e r  t h a t  t y p e  of ionization. 

The  c r i t i ca l  i n s t rumen ta l  parameters  necessary  f o r  combining L C  

with a MS have  been  optimized. In  one  case, discussion cen te red  on 

whether o r  no t  t h e  so lvent  should b e  removed i n  t h e  in t e r f ace  

( 1 2 ) .  It is s t a t ed  t h a t  t h e  basic philosophy in t h e  development of 

t h e  f i r s t  LC-MS sys tems inc luded:  

1. in t roduct ion  of t h e  t o t a l  HPLC column ef f luent  i n t o  

t h e  sepa ra to r ;  

2 .  selected removal of t h e  chromatographic ca r r i e r ;  

3 .  vaporization of t h e  n e u t r a l  ana ly te ;  

4 .  ionization a n d  m a s s  analysis.  

These  in i t ia l  developments led  t o  t r a n s p o r t  sys tems which are 

based on t h e  u s e  of a moving be l t  o r  wire f o r  conveying t h e  

solution, t h e n  t h e  so lu te ,  t h r o u g h  t h e s e  fou r  s t ages .  In t h e  cases  

of ionization, it w a s  soon realized t h a t  preformed i o n s  a l ready  

existing in t h e  solution could b e  directly vaporized and  analyzed 

when enough ene rgy  is suppl ied  t o  t h e  l iquid solution. Severa l  

methods a r e  avajlable f o r  ionization and  inc lude  e lec t rospraying ,  

electrohydrodynamic (EHD) ionization, field desorption (FD) , 
thermospray ionization, and  F A B  mass spec t romet ry .  

When in te r fac ing  a chromatographic column t o  a mass spec t rometer ,  

it is impor tan t  t o  realize t h a t  t h e  chromatographic column 

performs bo th  as a separa t ion  a n d  as a dilution un i t  (13). 

The problems involved with in te r fac ing  a n  H P L C  un i t  t o  a mass 

spectrometer s t e m  from t h e  relative incompatibility between t h e  

H P L C  effluent solution and  t h e  l o w  p r e s s u r e  in s ide  t h e  source  of 
t h e  m a s s  spec t rometer  (13) .  These  two ins t rumen ta l  f e a t u r e s  

make t h e  c o u p l h g  of t h e  two ins t rumen t s  more difficult 

compared t o  t h e  in te r fac ing  of a g a s  chromatograph t o  a mass 

spectrometer.  
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COMBINATION OF HPLC AND MS 321 

It is impor tan t  t o  consider t h e  main cons t r a in t s  which a r e  

in t roduced  by  t h e  chromatographic process  a s  w e l l  as t o  couple 

those  cons t ra in ts  with t h e  minimum requi rements  t h a t  t h e  in te r face  

must possess .  These  considerations w i l l  accurately descr ibe  t h e  

deg ree  of competitiveness t h a t  t h i s  i n t e r f ace  would possess  

and  w i l l  s u g g e s t  compromises which are acceptable from t h e  

chromatographic point of view. 

When combining a n  HPLC un i t  with a mass spec t rometer ,  it is 

impor tan t  t o  realize t h a t ,  as t h i s  process  occur s  spontaneously 

( i r revers ib ly)  from a thermodynamic point of view, t h e  decrease  i n  

en t ropy  which a r i s e s  from t h e  chromatographic separation is 

more t h a n  compensated f o r  by  t h e  inc rease  i n  en t ropy  deriving from 

t h e  dilution i n  t h e  mobile phase.  Whichever t y p e  of LC-MS 

i n t e r f ace  t h a t  is selected f o r  t h e  on-line coupling, t h e  u s e  of 

a non-volatile HPLC buf fe r  seems prone  t o  considerable 

difficulties. Fur thermore ,  a l though gradien t  HPLC elution is 

much talked about  i n  L C  r e sea rch  circles, t h a t  form of 

separation is relatively ra re ly  used .  

The  chromatographer is always su rp r i sed  by  t h e  l o w  

ionization yield ( E )  of t h e  mass spectrometer.  The  fac tor  E 
r e p r e s e n t s  t h e  number of i ons  collected on t h e  m a s s  

spec t rometer  detector p e r  number of molecules which is 

in t roduced  in to  t h e  ion source .  It is impor tan t  t o  review 

briefly t h e  var ious  sou rces  of those  losses  ( 1 3 ) :  
1. T o  de t ec t  a s igna l  at a given mass, and t o  calculate 

t h e  location of t h e  s igna i  maximum, t h a t  is, t h e  corresponding 

molecular weight, one needs  approximately 100 ions a t  t h e  

de tec tor  en t r ance  slit; practically all ions  reaching th i s  slit 

a r e  de tec ted .  
2. The object and  image sEts i n  most m a s s  spec t rometers  

a r e  of a rec tangular  cross-section. When a mass spectrometer 

is scanned ,  t h e  p roduc t  of t h e s e  two (presumably identical)  

slits is a t r iangle .  We requ i r e  200 ions  t o  e n t e r  t h e  analyzer.  

Losses i n  t h e  analyzer itself a r e  assumed t o  b e  negligible. 

3.  The ex t rac t ion  yield of ions from t h e  source  t o  t h e  
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322 DESIDERIO AND FRIDLAND 

analyzer across  ion optics (ion-focusing) is abou t  10%. 

Therefore ,  we need 10 x 200, o r  2,000 ions  i n  t h e  source .  

4 .  For identification pu rposes ,  w e  need t o  obtain a 

complete scanned  mass spectrum and  t h e  prev ious  f i g u r e  

(2,000 ions)  must b e  applied t o  those  ions  which account  only 

f o r  s m a l l  peaks  i n  t h e  mass spec t rum.  Peaks  t h a t  are 10% of 

t h e  base  peak  must be  detectable.  

Therefore,  a t  least 2 x 10 molecular ions  must b e  

formed dur ing  t h e  time when t h e  cor responding  mass is 

scanned .  

5. The  ionization yields v a r y  widely with both t h e  

ionization method used  and  f o r  t h e  par t icu lar  compound being 

analyzed. While t h a t  efficiency may b e  nearly one  f o r  electron 

cap tu re  of haloaromatics, it may, on t h e  o the r  hand ,  be  a s  

l o w  a s  If t h e s e  two va lues  a r e  averaged  t o  10 , t h e n  2 

x lo7 molecules should b e  p r e s e n t  du r ing  t h e  scan .  

-3 

6 .  The time t o  scan  one mass i n  a spectrum is abou t  

one msec, and  t h e  in t roduct ion  of sample molecules in to  

t h e  source  must t he re fo re  proceed a t  a speed  of 

approximately 2 x 10 lo molecules p e r  second. 

The maximum concentration C of t h e  Gaussian band M 
of a solute of retention volume V and  efficiency N is: 

eq .  1 

where m is t h e  sample mass. If t h e  column capacity is k' and  t h e  

liquid cross-section of t h e  column is s ,  then :  

C M  = (m/s) (N ')/[L (1 + k') (2x) 4 1 eq .  2 

where  L and  u are t h e  column l e n g t h  and  t h e  so lvent  velocity, 

respectively.  The  mass flow-rate of sample i n t o  t h e  mass 

spec t rometer  source  is t h e n  t h e  p roduc t  C M  F ,  where F (= 

Su)  is t h e  so lvent  fhw-rate. With a spli t t ing ratio r ,  t h e  

mass flow-rate of sample in to  t h e  sou rce  is: 
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COMBINATION OF HPLC AND MS 323 

4 4 dm / d t  = C F r  = (m - u - r - N  ) /  [ L . ( l  + k ' ) - ( 2  ) ] 

eq .  3 
M 

Comparing equation 3 with t h e  condition (6)  above; 

4 10 N'. (m.  u -  r .N4)/  [ M .  L * ( l  + k') - ( 2 r )  ] = 2x10 

eq. 4 

where M is t h e  molecular weight of t h e  solute and  N' is Avogadro's 

number.  With L = 15 c m ,  N = 1.5 x 10 plates,  u = 0.05 cm 

pe r  second, r = 1, M = 500, and k' = 1, then  m = 2x 10 - 
0.2 nanograms = 200 picograms. This l eve l  of sensit ivity is in  

gene ra l  agreement with t h e  specifications of modern mass 

spectrometer ins t ruments  which give t h e  detection l i m i t  of 100 
picograms of methyl s t ea ra t e  (M=298, m = 120 picograms). The 

latter specifications may not have  been calculated with t h e  

r a t h e r  favorable chromatographic conditions selected above: 

narrow peaks  with small retention give l a r g e  maximum 

concentration, The detection l i m i t  of a chromatographic 

detector is defined a s  t h e  mass of a compound t h a t  

genera tes  a s igna l  which is twice t h a t  of t h e  noise. 

4 

-10 - 

On t h e  o the r  hand ,  if t h e  mass spectrometer opera tes  no t  i n  

t h e  scanning mode b u t  r a t h e r  as a t r u e  selected ion monitor, t h e n  

a smaller amount of sample is necessary :  with a one second 

time-constant, 1000 t i n e s  less, o r  a round one picogram would 

suffice f o r  detection. The sensit ivity values a r e  s i m i l a r  f o r  

e i ther  a magnetic ins t rument  o r  fo r  a quadrupole.  The only 

possibility of improving t h e s e  detection l i m i t s  i n  a significant 

fashion is whenever a ve ry  efficient ionization technique is 

utilized; a f ac t  t h a t  explains why haloaromatics can b e  

determined a t  t h e  femotomole l eve l  with negative ions.  

C .  1. Controlkd Desolvaiion Chamber 

A high speed D L I  in te r face  i s  described (14) .  A t  t h e  

ex i t  of t h e  HPLC probe ,  a heated preevaporation chamber i s  

provided, where t h e  rcolecules have  a low speed i n  a high 
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324 DESIDERIO AND FRIDLAND 

pres su re  region. Following t h a t  region is a s h o r t  t rans i t ion  

zone from which t h e  molecules e n t e r  a h igh  speed-low p r e s s u r e  

region before en te r ing  t h e  ion  source .  This l a t t e r  region is t h e  

controlled desolvation chamber. The  maximum velocity i n  t h e  

transit ion zone is sonic velocity. 

A new desolvation chamber f o r  droplet-focusing o r  

Townselid d ischarge  ionization is descr ibed  as a n  in t e r f ace  f o r  

DLI in to  a mass spec t rometer .  This  new desolvation chamber 

contains a conically-shaped volume and  de r ives  from 

considerations t h a t  utilize a sl ightly d i f fe ren t  concept because 

preliminary experiments show t h a t  t h e  l iquid drople t s  are 

highly positively-charged du r ing  nebulization, and  t h a t  

phys ica l  contac ts  with t h e  walls of t h e  desolvation chamber 

should in gene ra l  b e  avoided. A positive potentidl  on t h e  

w& the re fo re  can b e  used  t o  r e p e l  t h e  droplets.  On t h e  

o ther  hand ,  b y  adoption of t h e  appropr i a t e  conical geometry,  

d rople t s  could e i the r  b e  focused along t h e  d r i f t  t u b e  ax i s  o r  

r a t h e r  converge  t o  an appropr i a t e  location. Other  

considerations of LC-MS in te r fac ing  have  been published by  th i s  

research  group (15-17). 

C.2. Thermospray  

Thermospray is defined as t h e  complete o r  pa r t i a l  vaporization 

of a liquid stream by heating it as it flows th rough  a 

capillary (18). Thermospray h a s  recent ly  been  demonstrated 

to b e  a versa t i le  i n t e r f ace  f o r  combined LC-Pis ,  where t h e  

heat is supplied e l e c t r i c d y ,  a n d  controlled b y  a n  electronic 

feedback  system t o  maintain a cons tan t  l eve l  of vaporization. 

The  optimal tempera ture  f o r  thermospray is a function of t h e  

solvent composition, flow rate, capillary dimensions and  t h e  

sample t o  b e  analyzed. Thermospray in te r faces  were f i r s t  

heated b y  lasers, t h e n  by oxy-hydrogen to rches ,  and  most 

recently by  c a r t r i d g e  hea ters .  

One of t h e  f i r s t  p a p e r s  i n  th i s  work descr ibes  a new 

sof t  ionization technique  f o r  t h e  M S  of complex molecules (19) .  
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COMBINATION OF HPLC AND MS 325 

Briefly, t h e  effluent from a n  H P L C  column e n t e r s  t h e  

vapor izer  via a steel capillary t u b e  which is partially 

immersed i n  a copper  cylinder which is heated t o  abou t  

1000°C by  f o u r  s m a l l  oxy-hydrogen flames. A s  a r e s u l t  of 

rapid hea t ing ,  a jet of vapor  a n d  aerosol  is produced nea r  

t h e  e x i t  of t h e  s ta in less  steel tube .  The  jet is f u r t h e r  hea ted  

as it passes  t h r o u g h  t h e  channe l  in t h e  copper .  It t h e n  

undergoes  a n  adiabatic expans ion ,  and  a portion passes  

t h r o u g h  a skimmer t o  t h e  ion source  where t h e  beam impinges 

on a nickel-plated copper  probe  which is electrically heated t o  

abou t  25OoC. While t h e  ion source  of t h e  m a s s  spectrometer is 

equipped  with a n  electron g u n  f o r  producing ions  f o r  normal 

C I  operation, i n  t h e  work described i n  t h i s  manuscript ,  t h a t  

gun  is t u r n e d  off. When t h e  cha rged  particle undergoes  a 

h igh  ene rgy  impact with t h e  heated probe ,  it is wholly o r  

p a r m y  vaporized, and  some of t h e  resu l t ing  molecules are 

ionized. Spec t ra  can b e  obtained f o r  dinucleosides (CpG;ApU) 

and  t h e  pentapept ide  leucine enkephalin (TyrGly GlyPheLeu). 

Background ionization of t h e  solvent is low and  t h i s  f ac t ,  

coupled with t h e  reduced  amount of fragmentation t h a t  is 

generally observed  with t h i s  t y p e  of ion source ,  lead t o  t h e  

su rp r i s ing  r e s u l t  t h a t  t h e  detection l i m i t  f o r  t h e  protonated 

molecular i on ,  (M+H)+, of most of t h e  nonvolatile subs t ances  

inves t iga ted  is substantially lower with t h e  electron beam 

t u r n e d  off! 

Both positive and  negative ion C I  mass spec t r a  were 

obtained f o r  nonvolatile biologic samples i n  t h e  one to  t e n  

nanogram range  f o r  f u l l  mabs scans ,  a n d  subnanogram quant i t ies  with 

selected ion monitoring ( S I N )  (19). It h a s  been  noted t h a t  

vaporization is possible without pyro lys i s  because  t h e  sample 

s p e n d s  a v e r y  s h o r t  time i n  t h e  h igh  tempera ture  region i n  

t h e  thermospray LC-MS in te r face .  During t h a t  t r a n s i t  t i m e ,  

t h e s e  samples are protected from overhea t ing  b y  t h e  solvent.  

The  l iquid en ter ing  t h e  hot  region is heated from ambient 

tempera ture  t o  t h e  vaporization point i n  a few nsec . ,  and  t h e  
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326 DESIDERIO AND FRIDLAND 

vapor  is expelled from t h e  hea t  r e g k n  within a msec. o r  less 

a f t e r  it is formed. Experiments show t h a t  t h e  detection l i m i t  

(signal-to-noise-ratio of two) f o r  a rg in ine  is 500 picograms 

a n d ,  €or methionine, 2.5 nanograms. If t h e  SIM measurement 

mode were used  f o r  only t h e  in t ens i ty  of ( M + H > + ,  t h e  

detection l i m i t s  w e r e  p red ic ted  t o  b e  abou t  one o r d e r  of 

magnitude more sensit ive.  I n  t h i s  s t u d y ,  phosphate bu f fe r s  

cannot b e  used ,  b u t  ammonium formate and  ammonium ace ta te  

a r e  used  extensively with essentially no difficulties. The  

major limitation t o  t h e  operation of t h e  mass spec t rometer  is 

t h a t  t h e  so lvent  vapor  is also t h e  GI r eagen t .  This  d u a l  role 

of t h e  same subs t ance  can  cause  difficulty i n  t h e  simultaneous 

optimization of both t h e  HPLC separation and  t h e  mass 

spectrometric detection. 

A s  mentioned above ,  ca r t r idge  hea te r s  have  been used  t o  

replace t h e  oxy-hydrogen to rches  i n  a thermospray  in t e r f ace  

readily adapted  to  quadrupole  mass spec t rometers  (20). HPLC 
effluents a r e  thermosprayed  directly i n t o  t h e  ion source ,  and  

t h e  excess  vapor  is pumped away by t h e  added  mechanical 

pump which is directly coupled t o  t h e  ion source  th rough  a 

po r t  opposite t h e  electrically-heated themospray vapor izer .  

When used with mobile phases  containing a significant 

concentration of i o n s  i n  solution (ca.  t o  I M ) ,  no e x t e r n a l  

ionizing source  is requi red  t o  achieve t h e  detection of many 

nonvolatile so lu tes  a t  t h e  subnanogram level.. The  mass 

spectrum of t h e  t r idecapept ide  ren in  s u b s t r a t e  w a s  shown and  

r ep resen t s  t h e  l a r g e s t  molecule which h a s  been successfully 

detected by  using thermospray  ionization. The  (M+H)+ of t h e  

ren in  s u b s t r a t e  is 1,758 m a s s  un i t s .  

A review of all t h e  ionization techniques  cu r ren t ly  

available €or mass spec t romet ry  f o r  nonvolatile molecules h a s  

been published ( 2 1 ) .  A common f e a t u r e  of a l l  of t h e  ionization 

methods appea r s  t o  b e  t h e  d i rec t  production of ions from a 

condensed phase  without formation of a neu t r a l  gas-phase 

molecule as a n  intermediate.  A n  a t tempt  is made t o  p r e s e n t  a 
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COMBINATION OF HPLC AND MS 327 

unified ionization model which a t  l ea s t  qualitatively accounts 

f o r  t h e  resu l t s  obtained b y  t h e  var ious  techniques.  A laser 

desorption mass spectrometer w a s  interfaced t o  a n  HPLC un i t  

using a moving stainless steel be l t ,  where samples are sp rayed  

online onto t h e  be l t  unde r  par t ia l  vacuum th rough  a 

thermospray vaporizer.  Laser desorption occurred with a l a se r .  

Two modes of operation are presented  f o r  t h e  thermosprayer ,  

one with (closed) and one  without (open) t h e  t r ans fe r  l ine.  

Using an  dec t rosp ray  method fo r  sample deposition, comparisons 

were made amongst t h e  e lec t rospray ,  closed, and open modes. 

It w a s  assumed t h a t  t h e  electrospray method has  a 100% 

efficiency t o  t r a n s f e r  t h e  sample; closed correlates t o  40% and 

t h e  open mode t o  20% efficiency of covering t h e  bclt .  A major 

limitation of t h e  p re sen t  moving be l t  system was found to  b e  

t h a t  t h e  HPLC separa t ions  must b e  accomplished i n  l e s s  t h e n  

nine minutes i n  o rde r  t o  p reven t  sample components from 

overlapping each o the r  on t h a t  belt .  

Triply and quadruply-charged molecules of nonderivatized 

glucagon (molecular weight equals  3 , 4 8 3  a.m.u.) are observed  ( 2 2 ) .  

I n  another  experiment,  a procedure  is presented  f o r  peptide 
sequencing by  utilizing a n  immobilized exopeptidase column 

which is directly coupled t o  a thermospray mass spectrometer (22 ) .  

Amino acid sequence determination s ta r t ing  a t  t h e  2- te rminus  

is effected i n  t h i s  manner. This experimentation parallels t h a t  

found previously fo r  a n  immobflized enzyme ( 2 3 ) .  

The underivatized pept ide  solutions are injected th rough  a 

column containing immobjlized carboxypeptidase Y and t h e  

amino acids were released, s t a r t i ng  from t h e  C-terminus of 

t h e  peptide cha in ,  and  directly t r anspor t ed  by  a continuously 

flowing aqueous bu f fe r  i n to  a thermospray mass spectrometer 

where t h e  ( M + H ) +  of each amino acid is determined ( 2 2 ) .  

Temperature of enzymolysis is a fac tor  because,  at 2 2 " ,  only 

two amino acids are found,  whereas a t  4 2 ' ,  f ive  amino acids 

are determined from angiotensin.  
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328 DESIDERIO AND FRIDLAND 

C.3 Microbore L C - M S  

The effluent from a microbore HPLC which ope ra t e s  a t  a flow 
-1 rate of e igh t  microliters min , is in t roduced  in to  a quadrupole  

mass spec t rometer  ion source  opera t ing  i n  t h e  C I  mode ( 2 4 ) .  

This paper  s tud ied  evaporation of l iqu ids  from a capillary in to  

a vacuum, where  a jet w a s  observed  in s ide  a g lass  envelope. 

The  j e t  appeared  t o  t r a v e l  s t r a i g h t  i n  air. However, when a 

vacuum w a s  applied,  t h a t  jet s t a r t ed  t o  bend .  This phenomenon is 

explained by  considering t h e  f a c t  t h a t  bo th  l a r g e  and  s m a l l  

droplets a r e  formed and  t h a t  t h e  s m a l l  d rople t s  evapora te  

more rapidly t h a n  t h e  l a r g e r  drople t s .  If t h e  s m a l l  d rople t s  

a r e  predominantly formed on one s ide  of t h e  j e t ,  owing t o  

t h e  i r r egu la r  shape  of t h e  orifice, t h e  evapora t ing  vapor s  

from t h e  s m a l l  d rople t s  push  t h e  l a r g e  drople t s  away from t h e  

ax is  of t h e  jet when a vacuum is applied.  

In s t rumen ta l  and  analytical  advan tages  h a v e  been  t aken  of 

microbore H P L C  coupled t h r o u g h  a D L I  in te r face  t o  a C I  mass 

spectrometer (25) .  The  analytical  capabilities of a microbore 

H P L C  which is in te r faced  t o  a n  unchanged quadrupole  mass 

spectrometer demonstrate continuous monitoring of t h e  to t a l  

HPLC effluent.  Ful l  scan  C I  mass spec t r a  of d r u g s  are 

obtained i n  t h e  r a n g e  of one  t o  f ive  nanograms. A microbore 

HPLC flow rate of e i g h t  microliters p e r  minute is utilized and  

SIM provides  a 20 picogram detection l i m i t  of a tranquilizer.  

Conventional H P L C  in s t rumen t s  generally opera te  a t  flow rates 

of 0.5 t o  two milliliters p e r  minute. It is not prac t ica l  t o  

in t roduce  t h e  to t a l  H P L C  e f f luent  t h r o u g h  a D L I  in te r face .  

However, microbore packed columns opera te  at  e luant  flow 

rates of two t o  fo r ty  microliters p e r  minute and  a r e  idea l  f o r  D L I .  

Because t h e  en t i r e  effluent from a microbore H P L C  can b e  d i rec ted  

in to  t h e  ion  source  f o r  mass spec t r a l  ana lys i s ,  nearly 100-fold 

inc reases  i n  sensit ivity may b e  realized (26) .  Conven&nal 

HPLC sys tems yield peak volumes of 0.5-2.0 m l ,  where  t h a t  r ange  

depends  upon t h e  flow rate and  column efficiency. On t h e  o the r  
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hand ,  utilizing microbore H P L C ,  peak volumes are found i n  

t h e  r a n g e  of 10 t o  30 microliters. The  s m a l l e r  volume i n  t h e  

latter case provides  a much more concentrated solution 

passing th rough  t h e  de tec tor ,  with a concomitant increase  i n  

t h e  detection l i m i t s  ( 2 7 ) .  

C .4. Liquid C hromatography-Mass Spectrometry-Mass Spectrometry 

(L C-MS-MS) 

I n  another  s tudy  determining sulfa d r u g s  i n  biologic 

fluids,  it is noted t h a t  one limitation r e su l t s  from t h e  DLI 

technique  of LC-MS because t h e  mass spec t r a  are v e r y  simple 

and  they  lack  sufficient specificity f o r  elucidation. 

Futhermore,  it is always possible t h a t  co-eluting compounds 

w i l l  appea r  superimposed i n  t h e  mass spec t rum,  a process 

which r e n d e r s  t h e  in te rpre ta t ion  r a t h e r  difficult. The novel 

technique of combined liquid chromatography-mass 

spectrometry-mass spectrometry ( L  C-MS-MS) of fers  t h e  

analytical  capability of a l so  providing collision activated 

dissociation (CAD) mass spec t r a  of t h e  characterist ic LC-MS 

ions  f o r  each of t h e  components of i n t e r e s t  (28) .  I n  this 

s t u d y ,  t h e  potential  of t h e  more open atmospheric p r e s s u r e  

ionization (API) source  design is utilized in combination with 

H P L C  and mass spectrometry i n  a t r ip le  s t age  quadrupole 

(TSQ) ins t rument .  Nitrogen is used  as t h e  coUision gas  with 

an effective t a r g e t  th ickness  of approximately 2x10 
-2 molecules centimeter . This  s tudy  w a s  prompted b y  t h e  

extreme paucity of fragmentation t h a t  occurs  i n  t h e  positive 

C I  LC-MS mode. 

14 

C .5. Liquid Chromatography-Negative Chemical Ionization 

Mass Spectrometry 

I n  another  s tudy  utilizing H P L C ,  negative ion C I  mass 

spectrometry was begun because of t h e  need t o  analyze 
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330 DESIDERIO AND FRIDLAND 

mixtures of explosives (29) .  Post-explosion ana lys i s  of 

res idues  is noted t o  b e  v e r y  re levant  i n  crimindlistic bombing. 

A simplified cons t ruc t ion  of a new micro LC-MS probe  is 

p resen ted ,  where  t h e  volume of t h e  HPLC microcell is calculated 

t o  be  1 . 2  microliter, and  which maintains t h e  one centimeter 

pa th length  of t h e  conventional cell,  where  t h e  l a t t e r  h a s  a 15 

microliter volume ( 3 0 ) .  
A desolvation chamber of new design s p r a y s  t h e  H P L C  

effluent i n t o  d rop le t s  t h r o u g h  a pinhole diaphragm ( 3 1 ) .  One 

of t h e  most effective ways of controlling t h e  desolvation of 

t h e  solute drople t s  is t o  u s e  a hea ted  zone, usually called a 

desolvation chamber,  i n  which t h e  drople t s  acqui re  a high 

speed  before en te r ing  t h e  C I  source .  Three  d i f fe ren t  

desolvation chambers  were s tudied  and  inc lude  t h e  

s t anda rd  Hewlett-Packard, ex tended ,  a n d  solvent-stripping models. 

A review of t h e  micro LC-MS methodology used  i n  d r u g  

analysis a n d  metabolism s tud ie s  h a s  been published (32) and  

t h e  quant i ta t ive  ana lys i s  of betamethasone i n  equine  plasma 

and  ur ine  by  D L I  micro-LC-MS is presented  ( 3 3 ) .  

A new vers ion  of t h e  thermospray  LC-MS in t e r f ace  is  descr ibed ,  

where t h i s  vers ion  d i f fe rs  from t h e  previously descr ibed  

in te r faces  i n  t h a t  it is a d u a l  pu rpose  probe-type in te r face  

which is in t roduced  conveniently i n t o  t h e  mass spectrometer 

v ia  a s t anda rd  d i r ec t  inser t ion  p robe  in l e t  ( 3 4 ) .  The device is 

a dua l  pu rpose  LC-MS in t e r f ace  and  it can  provide conventional 

D L I  LC-MS,  o r  t h e  copper  vapor izer  may b e  heated electrically 

t o  produce  thermospray  ionization. Detection l i m i t s  are 

cu r ren t ly  abou t  100 nanograms i n  t h e  thermospray  mode f o r  

nonvolatile, labile compounds us ing  two m m  i . d .  microbore L C  

columns and  a flow r a t e  of abou t  150 microliters p e r  minute. 

C .6.  Ultrasonic In t e r f ace  

An ultrasonic sp ray ing  device was cons t ruc ted  t o  overcome 

difficulties i n  sp ray ing  aqueous  so lvents  i n t o  t h e  vacuum 
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system of a mass spectrometer.  The ultrasonic vibration is 

achieved by  means of a magnetoconstriction i n  t h e  nickel inlet 

t u b e  (35). 

C . 7 .  Segmented Wire In te r face  

It has  been noted t h a t  t h e  I technique has  intrinsically 

simple implementation and  t h a t  t h e  moving be l t  in te r face  has  

significant advantages  i n  seve ra l  parameters including solute 

concentration- a process  t h a t  in t roduces  a g rea t e r  proportion 

of t h e  sample into t h e  mass spectrometer ion source  ( 3 5 , 3 6 ) .  

This group approached t h e  in te r face  problem by preconcentrating 

a liquid stream and in t roducing  t h e  effluent i n to  t h e  M S  by 

means of D L I .  The viewpoint is t h a t  t h e  advantages  of both 

ord inary  D L I  and t h e  moving belt  t echnique  would b e  combined. 

The described in te r face  device concent ra tes  a liquid stream 

by allowing it t o  flow down a resistance-heated stationary 

wire having t h r e e  successively-decreasing diameters of 0.8 

millimeters, 0 . 6  millimeters and  las t ly ,  0 . 3  m i l l i m e t e r s ,  where 

each section has  a l eng th  of 15, 7.5, and 1.5 centimeters,  

respectively.  When a drop  becomes too l a rge ,  it flows e i ther  

down t h e  wire o r  along t h e  ou te r  su r f ace  of t h e  DLI probe ,  

and  is lost. A light-emitting diode and  photocell are fitted a t  

t h e  gap and  sense  t h e  size of t h e  drop .  Electronic feedback  

from t h e  photocell controls t h e  c u r r e n t  t h rough  t h e  w i r e  t o  

hold t h e  drop  size constant.  The  ins t rumenta l  parameters are 

m e t  only with t h e  w i r e  t h a t  w a s  no t  of homogeneous cons t ruc t ion ,  

and t h e  three-segment w i r e  design described above w a s  a r r ived  

at empirically. A description is provided where t h e  

performance of t h e  concentrator w i r e  is t e s t ed  i n  an  e f for t  t o  

determine t h e  maximun flow which could b e  accomodated and  

s t i l l  maintain a 95% evaporation of t h e  solvent,  corresponding 

t o  a 230-fold increase  i n  sample concentration. 
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332 DESIDERIO AND FRIDLAND 

C.8. Nebulization 

The design of a D L I  i n t e r f ace  is descr ibed  which uses  a jet of 

helium g a s  t o  aid i n  t h e  nebulization of t h e  H P L C  ef f luent  and  

sample in to  t h e  MS source  ( 3 7 ) .  In te r faces  used  i n  coupling 

HPLC with M S  f a l l  i n t o  two bas ic  categories:  t r a n s p o r t  

in te r faces  a n d  D L I  in te r faces .  A number  of sys tems have  been 

used i n  t h e  DLI approach  f o r  in t roducing  t h e  L C  e f f luent  i n to  

t h e  MS source  and  inc lude  formation of l iquid jets th rough  

e i ther  v i scous  flow capillary o r  1.5 micron diaphragms and  

vacuum nebulization techniques .  

C .9.  S upercrif5cal Fluid Injection 

Direct supercr i r ica l  f luid injection in te r faces  have  been 

designed f o r  u se  with mass spec t romet ry  ( 3 8 ) .  Direct f luid 

injection (D FI) m a s s  spec t romet ry  utilizes supercr i t ica l  f lu ids  

f o r  solvation and  t r a n s f e r  of materials to  a C I  mass spectrometer 

source.  Supercr i t ica l  carbon dioxide with i sobutane  a s  t h e  C I  

r eagen t  gas  h a s  been used  and  DFI MS/MS is also i l lus t ra ted  

f o r  major ions in t h e  i sobu tane  C I  mass spectrum of T2 toxin. 

More polar compounds may b e  analyzed us ing  supercr i t ica l  

ammonia. This a l te rna t ive  LC-MS approach  uses  a supercr i t ica l  

fluid o r  "dense gas'' f o r  efficient t r a n s f e r  of material t o  t h e  

gas  phase  i n  t h e  C I  source .  The  DFI method a l l o w s  mass 

spec t r a  t o  be  obtained f o r  essentially any  compound which is 

soluble i n  t h e  supe rc r i t i ca l  f luid and hence allows a rapid 

qualitative evaluation of fluid phase  solubFUty. 

A t  high p r e s s u r e s  and above  t h e  c r i t i ca l  t empera tu re ,  

t h e  resu l t ing  fluid o r  dense  g a s  attains a dens i ty  approaching  

t h a t  of a l iquid which h a s  relatively s t rong  i n t e r n a l  molecular 

in te rac t ions  a n d  the re fo re  assumes  some of t h e  proper t ies  of a 

l iquid.  In describing t h e  DFI process ,  t h e  supercr i t ica l  fluid 

ex i t s  from a 50 t o  500 a tmosphere  p r e s s u r e  regioii t h r o u g h  a 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



COMBINATION OF HPLC AND MS 333 

hole in to  ano the r  p r e s s u r e  region which contains a Mach d i sk ,  

where initial c lus t e r s  have  a diameter of approximately 30 

angs t roms.  The  shock waves resu l t ing  a f t e r  t h e  Mach d i sk  

t h e n  t r a n s f e r  i n t o  a molecular s p r a y  which e n t e r s  a C I  region 

of a mass spectrometer a t  a p r e s s u r e  of approximately one  

t o r r .  The  Mach disk is charac te r ized  b y  two phemomena - t h e  

des t ruc t ion  of t h e  highly-directed jet and  t h e  coUisional 

ene rgy  t r a n s f e r  resu l t ing  i n  a red is t r ibu t ion  of t h e  directed 

kinetic ene rgy  of t h e  jet among t h e  var ious  translational,  

vibrational,  and  rotational modes of t h e  molecule. 

The u s e  of capillary column supercr i t ica l  fluid chromatography 

(SFC)- MS can  obviate t h e  difficulities associated with prev ious  

in t e r f aces  a n d  allows a simple in te r face  readily adapted  t o  

existing G C - M S  sys tems ( 3 9 ) .  The combination of SFC with 

mass spectrometry of fe rs  t h e  following potentidl  advan tages  

relative t o  GC-MS o r  LC-MS methods: 

1. high  molecular weight,  polymeric, polyfunctional, and  

thermally labile compounds can  b e  sepa ra t ed ,  a s  w e l l  as more 

volatile species;  

2.  capillary SFC columns can provide greatly enhanced 

chromatographic efficiency relative t o  H P L C  due  to  solute 

diffusivit ies which a r e  abou t  100 times g rea t e r  i n  t h e  

supercr i t ica l  fluid than  in t h e  cor responding  l iquid phase  and  

s i m i l a r  t o  t h e  g a s  phase; 

3 .  soluting power of t h e  mobile phase  can  b e  readily controlled 

with p r e s s u r e  programming. Mixed mobile phases ,  g rad ien t ,  

and  tempera ture  programming a r e  also feasible;  

4 .  SFC us ing  a capiliary column provides  l o w  mobile phase  

flow rates which, when coupled with high mobile phase  

volatiWy, a l l o w s  op t imal in te r fac ing  of SFC and  mass 

spectrometry.  

Optimal mobile phase  flow rates of f ive  t o  80 microliters 

p e r  minute ( supercr i t ica l  f luid) , depending  on column 

diameter and  p r e s s u r e ,  may b e  obtained i n  th i s  combination 

ins t rument .  The S F C  mobile phases  used  up  t o  now i n  this 

work a r e  i sobutane  and  normal pentane .  InitLal evaluations of 
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334 DESIDERIO AND FRIDLAND 

t h e  capillary SFC-MS in t e r f ace  demonst ra te  it t o  b e  mechanically 

simple and  reliable. Yolyaromatic hydrocarbon s tud ie s  ind ica te  

t h a t  a detection l i m i t  of approximately one  picogram is achieved. 

C.10. Examples of LC-MS Analysis of Compound Types  

Glucuronides a r e  characterized us ing  a thermospray  LC-MS 

in te r face  ( 4 0 ) .  Ten nanograms of t h e  g lucuronide  injected 

onto  a column suf f ice  f o r  characterization by  a scanned  mass 

spectrum. U W e  many of t h e  o the r  cu r ren t ly  available LC-MS 

in te r faces ,  t h e  thermospray  ionization in t e r f ace  a l l o w s  100% of 

a n  aqueous  e f f luent  t o  enter t h e  m a s s  spec t rometer  at f l o w  

r a t e s  up  t o  1.5 m l  pe r  minute. 

Nanogram amounts of t h e  pept ides  leucine enkephalin,  

methionine enkephalin (TyrGly GlyPheMet) , and alpha-amanitin 

a r e  obtained by  d i r ec t  LC-MS ( 4 1 ) .  Both (M+H)+ and  (M-H)- 
i ons  are obtained i n  t h e  posit ive and  negat ive  ion modes, 

respecttvely . 

D .  M O V I N G  BELT INTERFACES 

D ,1. In t roduct ion  

The  addition of a modified segmented flow ex t r ac to r  between a n  

HPLC and a mass spec t rometer  permits t h e  d i rec t  coupling of 

a n  HPLC opera ted  i n  t h e  r eve r sed  phase  (RP) mode t o  a mass 

spectrometer,  without compromising t h e  operational charactexistics 

of e i ther  i n s t rumen t  ( 4 2 ) .  Ion-pairing techniques  were 

studied and  demonst ra te  compatibility with on-line LC-MS ( 4 3 ) .  

Severa l  approaches  have  been explored  f o r  t h e  d i r ec t  

LC-MS combination: 

1. A moving wire/belt  system t h a t  t r a n s p o r t s  t h e  L C  effluent 

t h rough  a series of vacuum locks  f o r  t h e  so lvent  t o  b e  
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COMBINATION OF HPLC AND MS 335 

evaporated.  The sample is t h e n  in t roduced  in to  t h e  ion source  

f o r  analysis by  e i ther  E I  o r  C I .  

2 .  A 1% spl i t  of t h e  L C  effluent i n to  t h e  mass spectrometer,  

where t h e  L C  solvent is used a s  t h e  C I  r eagen t  gas.  

3 .  A vacuum nebulizing in te r face  t o  in t roduce  to t a l  

effluent from a microbore HPLC in to  t h e  ion source.  

4 .  The system t h a t  conver t s  t h e  LC effluent in to  a molecular 

beam b y  forcing it th rough  a nozzle res t r ic t ion ,  followed by  

flash evaporation us ing  a laser beam o r  sonic radiation, and  

then  mass spectrometric ana lys i s  i n  e i ther  t h e  E I  o r  C I  mode. 

5. Direct evaporation of t h e  to t a l  effluent in to  t h e  mass 

spectrometer ion source  followed b y  C I  u n d e r  API conditions. 

6 .  A silicone membrane enrichment device which removes 

t h e  so lvent  and  permits preferen t ia l  e n t r y  of t h e  solute in to  

t h e  m a s s  spectrometer.  

The  segmented-flow LC-MS in te r face  desa l t s  t h e  organic 

phase  with high efficiency. This f ac t  is demonstrated by  

analyzing sodium ions and  phosphate  ions  a t  t h e  0.3 ppm and 

10 ppm levels,  respectively.  

I n  a f u r t h e r  development of t h i s  t y p e  of LC-MS in te r face ,  

a specially designed nebulizer w a s  cons t ruc ted  fo r  deposition 

of t h e  effluent from t h e  HPLC column onto a moving belt  ( 4 4 ) .  

Another aerosol liquid deposition device was described ( 4 5 ) .  

Measurements of t h e  so lvent  t r a n s f e r  efficiency t o  t h e  belt  

were performed by f i r s t  spray ing  a peak from t h e  H P L C  

column onto t h e  belt ,  and  t h e n  comparing t h a t  peak area with 

t h e  area obtained by depositing t h e  same mass of sample onto 

t h e  be l t  with a sy r inge ,  where t h e  sy r inge  w a s  assumed t o  

provide 100% efficiency i n  t h e  t r a n s f e r  of t h e  solvent onto t h e  

belt .  A be l t  in te r face  can b e  t h o u g h t  of a s  consisting of f o u r  

basic s t eps ,  each of which may potentialty effect  

chromatographic performance: 

1. t r a n s f e r  o r  deposition s t ep ;  

2 ,  evaporation of t h e  so lvent  remaining on t h e  

be l t  with a n  in f r a red  hea ter ;  
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336 DESIDERIO AND FRIDLAND 

3 .  pass ing  of t h e  so lvent  i n to  t h e  vacuum lock 

sys tem;  

4 .  desorption of t h e  sample from t h e  be l t  i n t o  

t h e  ion  source .  

The  inf luence  t h a t  t h e  deposition s t ep  can  have  on t h e  

performance of t h e  LC-MS i n t e r f ace  is critical when comparing 

t h e  conventional method of flowing t h e  effluent onto t h e  be l t  

i n  a continuous stream v e r s u s  s p r a y  deposition. Dispersion of 

t h e  L C  e f f luent  i n t o  a f ine  m i s t  can provide  a n  efficient 

evaporation s t ep .  It is found t h a t  t h e  dimensions of t h e  

orifice t h r o u g h  which t h e  l iquid flows must b e  minimized t o  

p r e v e n t  l iquid from accumulating on t h e  g lass  t i p ,  a n d  also t o  

a l l o w  formation of t h e  s m a l l e s t  possible drople t s .  B y  us ing  a 

60' angle  between t h e  s p r a y  t ip and  be l t ,  d rople t  formation 

on t h e  be l t  behind  t h e  t i p  is minimized. Attention t o  t h e s e  

cri t ical  exper imenta l  s t e p s  is of primary importance i n  o r d e r  

t o  obtain good chromatographic fidelity inc luding  peak shape ,  

var iance ,  area, and  reproducibil i ty.  

D.2. Peptide S tudies  

Using a quadrupole  mass spec t rometer  outfi t ted with a 

moving be l t  in te r face ,  ~-acetyl-~,g,~-permethylated oligopeptides 

were analyzed ( 4 6 , 4 7 ) .  I sobutane  C I  yields good in t ens i ty  

(M+H)+ and  x- a n d  2- te rmina l  ions .  I n  addition, 5-methylated 

pept ides  are sepa ra t ed  by L C .  

Permethylated pept ides  and  pept ide  mixtures have  been 

studied employing normal phase  chromatography and  a moving 

be l t  LC-MS in t e r f ace  ( 4 8 ) .  Eighteen d i f fe ren t  pept ides ,  

ranging  i n  s ize  from di- t o  heptapept ides ,  were s tud ied  and  it 

was found t h a t  on-line LC-MS ammonia C I  s p e c t r a  produced 

complete o r  almost complete amino acid sequence  determination 

information. 
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COMBINATION OF HPLC AND MS 

D . 3 .  Analysis-of-Variance of System Components 

337 

Extra-column band-spreading  0% a n  HPLC-MS moving b e l t  

i n t e r f a c e  w a s  analyzed b y  a numer ica l  evaluat ion of t h e  

system v a r i a n c e  ( 4 9 ) .  S p r a y i n g  e f f e c t s  may b e  eva lua ted  b y  

cons ider ing  t h e  i n c r e a s e  of t h e  v a r i a n c e  ( t h e  second moment 

of mass) of t h e  chromatographic  b a n d .  Variances are addi t ive  

when cont r ibu t ions  are i n d e p e n d e n t .  

D . 4 .  Review of LC-MS T r a n s p o r t  Devices 

HPLC i n t e r f a c e s  with t r a n s p o r t  devices  were reviewed (50) 

a n d  a comparison is made of moving b e l t  i n t e r f a c e s  f o r  LC-MS 

(51). I n  t h e  i n t e r f a c i n g  of t h e  HPLC to  a mass s p e c t r o m e t e r ,  

t h r e e  fundamenta l  problems must  b e  overcome: 

1. how t o  make t h e  mass spec t rometer ,  which c a n  

handle  20 cc p e r  minute  of g a s  i f  conf igured  f o r  C I ,  

compatible with so lvent  flow rates of t h e  o r d e r  of o n e  

cc p e r  minute which r e s u l t  i n  g a s  volumes i n  t h e  r a n g e  

of 150 t o  1200 cc  p e r  minute ,  depending  on t h e  so lvent  

u s e d ;  

2. i n t r o d u c t i o n  of t h e  s o l u t e  i n t o  t h e  m a s s  spec t rometer  

so  t h a t  mass s p e c t r a l i n f o r m a t i o n  can  b e  obtained a n d  t h e  

so lu te  does n o t  u n d e r g o  t h e r m a l  decomposition; 

3 .  coupl ing of t h e  HPLC with t h e  mass s p e c t r o m e t e r  s o  

t h a t  t h e r e  can  b e  no loss of t h e  chromatographic  performance.  

It is noted t h a t  a f u r t h e r  problem which o c c u r s  is t h a t ,  

with a q u e o u s  so lvent  s y s t e m s  containing more t h a n  50% water, 

beading  of t h e  s o l v e n t  on t h e  b e l t  c a u s e s  p r e s s u r e  f luc tua t ions  

i n  t h e  i o n  s o u r c e  r e s u l t i n g  i n  poor mass s p e c t r a l  da ta .  

Although microbore HPLC w a s  i n i t i d l y  u W e d  with t h e  

moving b e l t  sys tem,  it has h a d  little s u b s e q u e n t  u s e .  

A t a b l e  i n  t h i s  review (50) col lects  t h e  appl icat ions a n d  

c o r r e s p o n d i n g  r e f e r e n c e s  of HPLC u s i n g  t r a n s p o r t  t y p e  
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338 DESIDERIO AND FRIDLAND 

in te r faces  and  inc ludes  t h e  following colnpound types :  

aflatoxins,  Amaryllidaceae alkaloids , antibiotics,  aromatic 

acids,  bile ac ids  a n d  the i r  conjugates,  carbamate pesticides,  

chinchona alkaloids, chlorinated phenols i n  u r ine ,  coal 

liquification p roduc t s ,  d in i t rophenyl  hydrazones ,  d r u g s ,  

effluent ana lys i s ,  e r g o t  alkaloids, glycosides,  herb ic ides ,  

l ipids,  liquid c rys t a l s ,  n a t u r a l  coumarins,  nucleosides,  

p ep t id  e s , p e sticid e s , p e t  rop o r  p h y r in  s , p oly chlorinated 

biphenyls and  t h e i r  metabolites, polynuclear aromatics, 

rotenoids,  s t e ro ids ,  s u g a r s ,  t r ig lycer ides ,  and  waxes. 

D.5. Ribbon Storage  Device 

A novel r ibbon s to rage  in t e r f ace  is descr ibed  (52, 53). 

The d is tance  between t h e  mass spec t rometer  a n d  t h e  HPLC 

uni t  approximates f ive  fee t .  This LC-MS in te r face  is designed 

f o r  use  with SIMS and  with conventional E I .  The  LC-MS in te r face  

inc ludes  a 120 cm region a t  atmospheric p r e s s u r e .  Aerosol 

deposition of t h e  H P L C  ef f luent  a l l o w s  t h e  complete evaporation 

of t h e  mobile phase  before  t h e  f i r s t  vacuum slit, and  6 320 cm 

to ta l  l eng th  a l l o w s  t h e  s to rage  of chromatographically-separated 

materials. Ten picograms of amino ac ids  have  been  de tec ted .  

The long ribbon also a l l o w s  temporary s to rage  of f ive  t o  60 

minutes of HPLC separa t ions  on t h e  r ibbon f o r  subsequen t  

reanalysis by SIMS o r  E I .  

A new method f o r  r ibbon cleaning using vapor  deposition 

of a th in  l a y e r  of s i lver  is a lso  described (52,53) which 

reduces  background from contaminants and  res idues  on t h e  

ribbon and  is supe r io r  t o  hea te r s  o r  solvent b a t h s  f o r  ribbon 

cleaning. The l iquid is deposited on t h e  r ibbon su r face  b y  an 

aerosol  liquid deposition device. The  h e a r t  of t h e  in t e r f ace  is 

a ribbon (0 .63  cm wide, 0.0087 cm th i ck ,  and  320 cm long)  

spot-welded t o  perform a continuous loop. Ribbons of 

high-purity nickel, molybdenum, and platinum are found to  
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COMBINATION OF HPLC AND MS 339 

have acceptable mechanical proper t ies ;  most of t h e  work is 

done with high-purity nickel. 

E .  I O N I Z A T I O N  M E T H O D S  FOR LC-MS 

Ionization methods available f o r  LC-MS a r e  reviewed 

( 5 4 ) .  Nine different methods a r e  described and include 

desorption chemical ionization ( D  CI) , l a se r  desorption (LD) , 
field desorption (FD) , electrohydrodynamic ionization (EHI) , 
252Californium plasma desorption (PD) ,  SIMS,  F A B ,  A P I  and 

thermospray ionization technique. 

F.  C O N C L U S I O N S  

A t  t h e  p re sen t  t i m e ,  no one  of t h e  on-line in te r face  

devices described above h a s  taken  cha rge  of t h e  field t o  

become universally use fu l  i n  laboratories a round t h e  world. 

Each one of t h e  proponents  of t h e  different on-line techniques  

can descr ibe  t h e  advantages  and  disadvantages of each 

system. It is clear from t h e  da ta  and experience published i n  

t h e  l i t e r a tu re  t h a t  more developmental t i m e  is needed. Tha t  

hesitation of employing t h e  commercially available HPLC-MS 

in te r faces  notwithstanding, it is qui te  clear t h a t  t h i s  t y p e  of 

on-line LC-MS in te r face ,  once it has  been appropriately 

developed and utilized, wFU significantly increase  t h e  use  of 

mass spectrometry as t h e  detector f o r  H P L C  f o r  t h e  

measurement of endogenous compounds. 

11. OFF-LINE C O M B I N A T I O N  OF L I Q U I D  

C H R O M A T O G R A P H Y  A N D  MASS S P E C T R O M E T R Y :  E X A M P L E S  

OF P E P T I D E  M E A S U R E M E N T S .  

A .  I N T R O D U C T I O N  

WhLLe t h e  f i r s t  section reviewed .the on-line combination of 

L C - M S ,  t h i s  section w i l l  focus on t h e  off-line combination of 
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340 DESIDERIO AND FRIDLAND 

LC a n d  MS, where  a compound e lu t ing  a t  a known re ten t ion  

t i m e  is manually collected a n d  is measured by  MS techniques .  

Extensive ana ly t ica l  measurements  have  been made of endogenous  

pept ides  ex t r ac t ed  from biological sou rces .  

product ion of (M+H)+ ions  of biologically impor t an t  pept ides  

by means of FAB mass spec t romet ry  (55). Doubly-charged molecular 

ions of insu l in  h a v e  been  obse rved  i n  some ins t rumen t s  (56) a n d  

s ingly-charged ions  of t h e  p r o i n s u m  molecule i n  o t h e r  

i n s t rumen t s  ( 5 7 ) .  However, because  of t h e  reiat ively high 

background produced  b y  t h e  matrix needed  f o r  FAB m a s s  

spec t romet ry ,  t h e  resolut ion of t h i s  ana ly t ica l  system must b e  

increased  i n  one  of two ways (58). On one  h a n d ,  t h e  mass 

resolut ion can b e  inc reased  u p  t o  one  p a r t  in ca. 20,000 t o  

effectively i so la te  t h e  accu ra t e  mass of (M+H)+. However, 

e spec id ly  i n  t h e  case  of pep t ides ,  it is known t h a t  even  t h e  

(M+H)+ of a pept ide  l acks  suf f ic ien t  molecular specificity f o r  

unambiguous quant i f icat ion.  On t h e  o t h e r  h a n d ,  s t r u c t u r a l  

resolut ion can b e  s ignif icant ly  inc reased  b y  t ak ing  advan tage  

of linked-field scann ing  MS t echn iques  (59) ,  especially i n  t h e  

B / E  mode, where one  selected p roduc t  ion is selected from a 

p r e c u r s o r  ion. I n  bo th  cases ,  f ragmenta t ion  can  e i the r  b e  

inc reased ,  o r  c r ea t ed ,  b y  t h e  u s e  of C A D  processes .  

In t h i s  sec t ion ,  a d v a n t a g e  is taken  of t h e  f a s t  a n d  facile 

I n t e r n a l  s t a n d a r d s  (60, 61) can  b e  efficiently produced  fo r  

measurement of pept ides  b y  incorpora t ing  a s t ab le  i so tope  

such  as l 8 O  i n t o  t h e  pept ide  molecule (62, 6 3 ) .  

B .  ~ O N S T R U C T I O N  OF C A L I B R A T I O N  C U R V E  

The  method of ana lys i s  employing t h e  

FA B - C A D  -B / E- B'/ El-SIM-microcomp u t e r  measurement  mode 

must  demonst ra te  a l i nea r  r e sponse  ove r  t h e  r a n g e  of concent ra t ions  

of endogenous  pept ides .  The  u s e  of bo th  t h e  s t ab le  
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isotope-incorporated pept ide  i n t e r n a l  s t anda rd  and  th i s  novel  

ana ly t ica l  measurement mode are impor tan t  t o  demonst ra te  

l inearity and  t o  overcome biologic matrix effects.  Primary da ta  

from one  of t h e  accelerating voltage alternation experiments 

f o r  leucine enkephalin v e r s u s  l80 leucine enkephalin w e r e  

used  to  monitor t h e  peak  at mass 336 i n  t h e  former case  and  

340 in t h e  l a t t e r  case.  This  selected pa i r  of ions cor re sponds  

t o  t h e  t r ipept ide  sequence  -GFL which der ives  from t h e  

C A D - B / E  analysis mode ( 6 4 ) .  This amino acid sequence-determining 

ion is a p roduc t  ion  a r i s ing  only from t h e  (M+H)+ ion  of 

leucine enkephalin- a most significant exper imenta l  f a c t  t h a t  

rigidly maintains t h e  molecular specificity of t h e  analytical  

measurement. 

The  microcomputer i n t e r f ace  is used  t o  accept  a l a r g e  

number of analog signals t o  optimize ion  statistics (65). 

In t eg ra t ed  a reas  a r e  calculated and  t h e  ratio of t h e  known 

amounts of t h e  l 6 O  and  t h e  l 8 O  spec ies  a r e  plotted. The  

calibration c u r v e s  f o r  bo th  t h e  methionine enkephalin (ME) 

and  leucine enkephalin (LE) exper iments  show t h a t  both 

c u r v e s  in t e rcep t  at ,  o r  v e r y  nea r ,  t h e  origin and  have  

correlation coefficients nea r  un i ty .  The  s ta t i s t ica l  parameters  

f o r  t h e  two best-fi t  s t r a igh t  lines a r e ,  fo r  ME:  y = 1 . 0 9 ~  + 
L 0.06, r = 0.999 and  f o r  LE:  y = 0.69x, r' = 0.995. 

C .  H Y P O T H A L A M U S  T I S S U E  EXTRACTS 

The  R P - H P L C  chromatogram f o r  canine hypothalamus t i s s u e  

demonst ra tes  t h a t ,  a t  t h e  U V  wavelength being monitored (200 nm) ,  

t h e  R P - H P L C  chromatogram of a hypothalamic peptide-rich 

fraction is relatively clean of UV-absorbing material (66, 67) .  

It is qui te  impor tan t  t o  remember t h a t ,  of cour se ,  a wealth of 

biologically ac t ive  rad ioreceptorassayable ,  bioassayable,  

a n d / o r  radioimmunoassayable material may, and  generally does,  

coelute on this chromatogram a t  t h e  indicated re ten t ion  t i m e s  
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3 4 2  DESIDERIO AND FRIDLAND 

and usually a t  o the r  retention t i m e s  (68, 69) .  However, it is 

experimentally observed  t h a t ,  at a U V  detection sensit ivity 

l eve l  of 0.1 AUFS, microgram amounts of pept ides  are detected (70) 

whereas radioreceptor assay  (RRA) , radioimmunoassay (RIA) , 
and bioassay (BA) a r e  capable of detecting ng  and  pg 

amounts,  b u t  with no s t r u c t u r a l  information attached t o  those  

measurements. 

While experimental  exper ience  ind ica tes  t h a t  t h e  RP-HPLC 

resolution of t h e  two enkephalin peaks may b e  increased  by  

alterations of s eve ra l  experimental  parameters including 

recycling and /o r  change  of t h e  buf fer  a n d / o r  organic  modifier, 

flow rate, tempera ture ,  e t c . ,  it must b e  remembered t h a t  i n  

t h e  novel  mode of off-line LC-MS analysis,  t h e  detector is no t  

limited t o  only U V  absorp t ion ,  b u t  r a t h e r ,  utilizes a unique 

amino acid sequence-determining ion which arises from a 

peptide eluting a t  one  selected retention time. In t h i s  t y p e  of 

measurement mode, virtually all chromatographic and  chemical 

background noise d isappears .  The  plot of leucine enkephalin 

and  t h e  l80 leucine enkephalin i n t e r n a l  s t anda rd  (M+H)+ 

ratios fo r  t h i s  hypothalamus da ta  shows t h a t  t h e  in te rsec t ion  

of t h e  s igna l  and  noise levels cor responds  t o  170 ng  leucine 

enkephalin g-l hypothalamus t i s s u e  (71 ) .  

D .  T H A L A M U S  TISSUE EXTRACTS 

180-incorporated i n t e r n a l  s t a n d a r d s  are used  t o  determine 

endogenous amounts of enkephalin i n  canine thalamus t i s sue  (72 ) .  

The s t r a i g h t  line in t e r sec t s  t h e  abcissa at values corresponding 

to  62 ng L E  and  125 ng  ME g-' thalamus, respectively.  

E .  P I T U I T A R Y  

A number of can iae  pituitaries (70) is neuroanatomicaJly 

separa ted  in to  t h e  an ter ior  (1.9 g .  t o t a l  w e t  weight) and  
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COMBINATION OF HPLC AND MS 343 

posterior (0.44 g to t a l  w e t  weight) portions.  The  t i s sue  is 

homogenized i n  acetic acid (1 M> and divided in to  t h r e e  equa l  

samples. I n  t h e  an ter ior  p i tu i ta ry ,  70 ng  of L E  and 2,950 ng  

of ME gml a r e  found while 2 ng  LE and 3760 ng ME g-' a r e  

measured i n  t h e  posterior pituitary ex t rac ts .  

F .  C A U D A T E  NUCLEUS 

F D M S  methods have  been used  to  measure t h e  endogenous amount 

of enkephalin i n  canine nucleus t i s sue  ex t r ac t s  ( 7 1 ) .  The 

amount of endogenous leucine enkephalin i n  t h e  canine caudate 

nucleus t i s sue  ex t r ac t  is 1,500 ng  leucine enkephalin g-' t i s sue .  

G .  T O O T H  P U L P  

Tooth pulp t i s sue  is collected from four  animals and  pooled 

(four t ee th  from each animal; t o t a l  = 1 6 ) .  Canine tooth pulp 

RP-HPLC chromatograms have  been published (74) .  The  endogenous 

amount of M E  f o r  pooled tooth pulp t i s s u e  is 3 micrograms 

g tooth pulp t i s sue .  -1 

H .  ELECTROSTIMULATED T O O T H  PULP 

In a s tudy  of nociceptive processes,  levels of enkephalins 

are determined i n  canine tooth pulps  which had been 

electrostimulated i n  vivo and  compared t o  leve ls  of t h e s e  

peptides i n  tooth pulps  of cont ro l  animals. The  c u r r e n t  

working hypothes is  underlying t h i s  t y p e  of physiologic s t u d y  

is t h a t  t h r e e  peptidergic pathways (endorphinergic,  dynorphinerg ic ,  

and  enkephallnergic) are available t o  a cell  t o  maintain a 
dynamic homeostatic relationship and  t o  dea l  with noxious 

stimuli. The  t h r e e  peptidergic pathways are composed of l a r g e  
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3 4 4  DESIDERIO AND FRIDLAND 

precur so r  pept ides ,  t h e  opioid oligopeptide,  and  metabolites. 

Noxious st imuli  are hypothesized t o  ac t iva te  t h e  pept iderg ic  

pathways,  and  ind iv idua l  opioid pept ides  may have  decreased 

concentrations following stimulation. Electrostimulation 

significantly decreases  by  20% t h e  amount of endogenous  M E .  

A gene ra l  overa l l  t r e n d  noted is t h a t  t h e  two opioid 

pentapept ides  M E  and  L E  are a l te red  upon electrostimulation 

(75 , i 6 ) .  Electrostimulation is performed t o  elucidate those  

molecular mechanisms opera t ing  du r ing  a physiologically 

s t r e s s f u l  si tuation. These  preliminary da ta  ind ica te  t h a t  t h e  

t h r e e  pept iderg ic  pa thways  (dynorphinerg ic ,  endorphinerg ic ,  

enkephalingeric) may be  mobilized i n  t h e  following sequence :  

Large  p recu r so r  - in te rmedia te  precursor(s)-  

pentapept ide(s )  - inac t ive  metabolites ( 7 7 ) .  

On one hand ,  t h e r e  may b e  a naturally-occurring pool of 

pentapep t i des  which is electrostimulated towards  metab olisn 

o r ,  on t h e  o the r  h a n d ,  t h e  e n t i r e  metabolic scheme noted 

above may b e  stimulated t o  produce  a lowered endogenous  amount 

of each cons t i tuent  peptide.  Other human and  i n  vivo dynamic 

s tudies  a r e  needed t o  reso lve  t h a t  question. 

I. CEREBROSPINAL FLUID 

L E  (44  ng m i ' )  was measured i n  canine CSF ( 7 1 ) .  This 

t y p e  of measurement is impor tan t  i n  c u r r e n t  clinical s tud ie s  

aimed towards  t h e  elucidation of molecular mechanisms 

involved in  pain. 

J. C O N C L U S I O N S  

Severa l  significant conclusions a r e  derived from t h e  

experiments utilizing t h e  off-line LC-MS measurement modes 

which a r e  r epor t ed  i n  th i s  section. 

A f a s t  and  facile method of t i s s u e  sample acquisition 

and  procurement from t h e  canine animal model is described ( 7 8 ) .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



COMBINATION OF HPLC AND MS 345 

This s t u d y  demonst ra tes  t h a t  rapid f reez ing  of t i s sue  is 

needed in  a fashion s i m i l a r  t o  t h a t  descr ibed  i n  t h e  discovery 

of 190H-PGE compounds i n  human seminal fluid (79-81). Rapid 

f reez ing  avoids ,  o r  at l e a s t  minimizes, metabolic and  chemical 

in te rconvers ions  and  also enhances  t h e  possibility of 

measuring only those  endogenous  t a r g e t  compounds and  not  

art ifacts or chemicallenzymic products .  The  need f o r  a n  i n t e r n a l  

s t anda rd  f o r  a n  MS analytical  measurement is demonstrated by  

previous  workers  (60, 61) t o  overcome t h e  limitations imposed 

by  t h e  experimentally r a t h e r  ill-defined, ye t  ve ry  red,  

biological matrix effects.  Stable isotope-incorporated pept ides  

are t h e  most appropr ia te  i n t e r n a l  s t a n d a r d s  f o r  measurement 

of endogenous peptides.  Stable isotope-incorporated pept ide  

i n t e r n a l  s t a n d a r d s  also have  hydrophobicity and  MS behavioral  

charac te r i s t ics  s i m i l a r  t o  t h e  endogenous peptides.  An i n t e r n a l  

s t anda rd  is added  as soon a s  possible a f t e r  t i s sue  acquisition 

and  before homogenization i n  t h e  separation scheme a s  a 

means t o  accurately r e p r e s e n t  t h e  endogenous  amount of 

peptide,  and  also to provide sufficient time f o r  equilibration 

(61) of t h e  exogenous and  endogenous  peptides.  

2 

The most significant exper imenta l  parameter of any  

analytical  measurement of a biological compound is t h e  

molecular specificity of t h a t  measurement; namely, is t h e  

compound one t h i n k s  is be ing  measured t h e  compound t h a t  is 

actually being measured? This  concept of specificity is easy  t o  

s t a t e  b u t  experimentally r a t h e r  difficult t o  prove  

unambiguously. One au tho r  calls t h i s  experimental  phenomenon 

t h e  "chromatographic uncer ta in ty  principle'' (82) .  Many o the r  

a s say  methods are generally utilized because  of t he i r  relative 

ease ,  low cos t ,  h igh  speed ,  h igh  sens i t iv i ty ,  and  putatively 

high molecular specificity. For example, chromatography,  

color reactions,  enzymatic reac t ions ,  HPLC, B A ,  R R A ,  and  

R I A  a r e  some of t h e  measurement p rocedures  which are used  

i n  most labora tor ies  a round t h e  world. However, one of t h e  

purposes  of t h i s  review is t o  state unequivocally t h a t  the 
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346 DESIDERIO AND FRIDLAND 

molecular specificity of all of t h e  above  measurement methods 

is insufficient f o r  unambiguous s t r u c t u r a l  proof du r ing  an 

analytical  measurement (78) .  Of course ,  t h e  non-MS assay  

methods l i s ted  above  w i l l  always b e  used ,  b u t  i nves t iga to r s  

must a t  l e a s t  b e  aware of and  s t a t e  t h e  limitations of any  

statements made relating t o  s t r u c t u r e .  Only one  measurement 

process ,  namely MS , offers  unambiguous molecular specificity. 

On one  hand ,  ability t o  produce  t h e  ( M + H ) +  ion of a 

biologically impor tan t  pept ide  is a s igna l  advancement i n  
t h e  measurement of endogenous  peptides.  But even  th i s  

parameter ,  (M+H>+, w h i l e  significantly increas ing  specificity, 

does not confer unambiguous molecular specificity t o  t h a t  

measurement. The  only analytical  method cu r ren t ly  available 

and which uses  MS t o  provide  maximum molecular specificity is 

t o  use  a n  amino acid sequence-determining ion from t h e  

( M + H ) +  ion produced  by  F A B  with e i the r  unimolecular o r  C A D  

processes ,  and  t h e n  t o  collect by  a linked-field scan  only one  

unique  amino acid sequence-determining ion. Fur thermore ,  use 

of a s tab le  isotope-incorporated i n t e r n a l  s t a n d a r d ,  which is 

t h e  same pept ide  as t h a t  be ing  measured, additionally 

subs tan t ia tes  t h e  molecular specificity of t h e  analysis.  

I n  t h e  s tudy  d iscussed  above ,  t h e  -C--terminal t r i pep t ide  

sequence  ions -GFL from L E  and  -GFM from ME are selected 

f o r  monitoring, and  t h e  analytic measurement of endogenous  

peptides is based  upon t h o s e  two ions and  t h e i r  cor responding  

180-internal s t a n d a r d s .  

The  detection sensit ivity of t h e  novel  LC-MS p rocess  

described above  is quite encouraging  f o r  analytical  measurement 

of endogenous  pept ides  i n  most biological t i s sues  and  fluids.  

For example, enkephalin pept ides  i n  canine caudate  nuc leus  

t i s sue  e x t r a c t s  are measured a t  t h e  200-400 ppb  level.. The 

c u r r e n t  i n s t rumen ta l  limitation co r re sponds  t o  t h e  30 ppb 

level. It is significant t o  realize t h a t  s e v e r a l  significant 

i n s t rumen ta l  i nc reases  (10-1OOx) i n  t h e  detection l i m i t s  are 

forthcoming. 
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COMBINATION OF HPLC AND MS 347 

The peptide measurements inc lude  endogenous amounts of 

both ME and  L E  ex t rac ted  from a var ie ty  of biological sou rces  

including hypothalamus, C S F ,  an te r ior  and posterior pituitary , 
caudate nucleus,  and tooth pulp (pooled and electrostimulated) . 
It is important t o  unde r t ake  t h i s  t y p e  of analyticaljphysiological 

s tudy  within one laboratory t o  e n s u r e  quality cont ro l  ove r  all 
experimental  manipulations which r a n g e  from t h e  l i ve  animal 

model t h rough  exsanguination , t i s sue  procurement,  homogenization , 
chromatography, MS , and da ta  analysis.  Inter-animal biologic 

variations a r e  observed  and  it is possible t o  have  one  animal 

s e r v e  as it own control. 
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